A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020)

Orodispersible films (ODFs)are ultra-thin, stamp-sized, rapidly disintegrating, and attractive oral drug delivery dosage forms best suited for the pediatric and geriatric patient populations. They can be fabricated by different techniques, but the most popular, simple, and industrially applicable technique is the solvent casting method (SCM). In addition, they can also be fabricated by extrusion, printing, electrospinning, and by a combination of these technologies (e.g., SCM + printing). The present review is aimed to provide a comprehensive overview of patented technologies of the last two decades to fabricate ODFs. Through this review, we present evidence to adamantly confirm that SCM is the most popular method while electrospinning is the most recent and upcoming method to fabricate ODFs. We also speculate around the more patent-protected technologies especially in the domain of printing (two or three-dimensional), extrusion (ram or hot-melt extrusion), and electrospinning, or a combination of the methods thereof.

Download the full article

Continue reading here

About this article: Gupta, M.S.; Gowda, D.V.; Kumar, T.P.; Rosenholm, J.M. A Comprehensive Review of Patented Technologies to Fabricate Orodispersible Films: Proof of Patent Analysis (2000–2020). Pharmaceutics 2022, 14, 820. https://doi.org/10.3390/pharmaceutics14040820

Conclusions
In general, the last two decades and particularly post-2010 has seen a significant growth in employing different fabrication technologies to prepare ODFs. SCM has been vividly explored for a long time and consequently, more literature in the form of patents and journal publications are available when compared with other fabrication technologies. On the other hand, printing techniques to fabricate ODFs is the upcoming technology and a proper regulatory rigor in this domain would motivate pharmacists to employ this technology in a pharmacy setting to offer personalized medication for patients. Electrospinning stands out as a less explored fabrication technology and, therefore, it requires extensive developmental diligence to help fabricate ODFs of all classes of drugs. Similarly, melt-extrusion is yet another upcoming technology to fabricate ODFs. While the temperature sets a few limitations, recent developments in this domain have aided in overcoming this limitation as well. Combinations of the above known methods are the new trend to fabricate ODFs but are yet to see promising outcomes, and more research is warranted in this domain. Despite the progress seen in the patented technologies to fabricate ODFs, some of the limitations of these technologies are still hindering large-scale production and commercialization. Accordingly, more modifications are envisaged in the existing technologies to produce ODFs of high quality using an effective and efficient process to obtain more output with a minimum number of defects.

You might also like