Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product N-Nitrosamine Impurities

The potential for N-nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. N-Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight N,N-dialkylnitrosamine impurities. Regulatory authorities have issued guidance to market authorization holders to review all commercial drug substances/products for the potential risk of N-nitrosamine impurities, and in cases where a significant risk of N-nitrosamine impurity is identified, analytical confirmatory testing is required. A key factor to consider prior to analytical testing is the estimation of the daily acceptable intake (AI) of the N-nitrosamine impurity. A significant proportion of N-nitrosamine drug product impurities are unique/complex structures for which the development of low-level analytical methods is challenging. Moreover, these unique/complex impurities may be less potent carcinogens compared to simple nitrosamines. In the present work, our objective was to derive AIs for a large number of complex N-nitrosamines without carcinogenicity data that were identified as potential low-level impurities. The impurities were first cataloged and grouped according to common structural features, with a total of 13 groups defined with distinct structural features. Subsequently, carcinogenicity data were reviewed for structurally related N-nitrosamines relevant to each of the 13 structural groups and group AIs were derived conservatively based on the most potent N-nitrosamine within each group. The 13 structural group AIs were used as the basis for assigning AIs to each of the structurally related complex N-nitrosamine impurities. The AIs of several N-nitrosamine groups were found to be considerably higher than those for the simple N,N-dialkylnitrosamines, which translates to commensurately higher analytical

Continue reading here

About this article: Chem. Res. Toxicol. 2022, 35, 3, 475–489 Publication Date:February 25, 2022 https://doi.org/10.1021/acs.chemrestox.1c00369 Copyright © 2022 American Chemical Society


See our webinar on Inhibition Strategies for Nitrosamine Formation In Drug Products:

Webinar Antioxidants, a safe and viable Inhibition Strategy for Nitrosamine Formation In Drug Products
Webinar – Antioxidants, a safe and viable Inhibition Strategy for Nitrosamine Formation In Drug Products
You might also like