Real-time Monitoring of Powder Mass Flowrates for Plant-wide Control of a Continuous Direct Compaction Tablet Manufacturing Process

While measurement and monitoring of powder/particulate mass flow rate are not essential to the execution of traditional batch pharmaceutical tablet manufacturing, in continuous operation, it is an important additional critical process parameter. It has a key role both in establishing that the process is in a state of control, and as a controlled variable in process control system design. In current continuous tableting line operations, the pharmaceutical community relies on loss-in-weight feeders to monitor and understand upstream powder flow dynamics.

However, due to the absence of established sensing technologies for measuring particulate flow rates, the downstream flow of the feeders is monitored and controlled using various indirect strategies. For example, the hopper level of the tablet press is maintained as a controlled process output by adjusting the turret speed of the tablet press, which indirectly controlling the flow rate. This gap in monitoring and control of the critical process flow motivates our investigation of a novel PAT tool, a capacitance-based sensor (ECVT), and its effective integration into the plant-wide control of a direct compaction process. First, the results of stand-alone experimental studies are reported, which confirm that the ECVT sensor can provide real-time measurements of mass flow rate with measurement error within -1.8 ∼ 3.3 % and with RMSE of 0.1 kg/h over the range of flow rates from 2 to 10 kg/h. The key caveat is that the powder flowability has to be good enough to avoid powder fouling on the transfer line walls.

Next, simulation case studies are carried out using a dynamic flowsheet model of a continuous direct compression line implemented in Matlab/Simulink to demonstrate the potential structural and performance advantages in plant-wide process control enabled by mass flow sensing. Finally, experimental studies are performed on a direct compaction pilot plant in which the ECVT sensor is located at the exit of the blender, to confirm that the powder flow can be monitored instantaneously and controlled effectively at the specified setpoint within a plant-wide feedback controller system.

Read the article here

Article information: Yan-Shu Huang, Sergio Medina-González, Benjamin Straiton, Joshua Keller, Qussai Marashdeh, Marcial Gonzalez, Zoltan Nagy, Gintaras V. Reklaitis. Real-time Monitoring of Powder Mass Flowrates for Plant-wide Control of a Continuous Direct Compaction Tablet Manufacturing Process, Journal of Pharmaceutical Sciences, 2021. https://doi.org/10.1016/j.xphs.2021.06.005.

You might also like